Development of a Convolutional Neural Network Model to Predict Coronary Artery Disease Based on Single-Lead and Twelve-Lead ECG Signals

Author:

Vasudeva Shrivathsa ThokurORCID,Rao Shrikantha Sasihithlu,Panambur Navin Karanth,Shettigar Arun KumarORCID,Mahabala ChakrapaniORCID,Kamath Padmanabh,Gowdru Chandrashekarappa Manjunath PatelORCID,Linul EmanoilORCID

Abstract

Coronary artery disease (CAD) is one of the most common causes of heart ailments; many patients with CAD do not exhibit initial symptoms. An electrocardiogram (ECG) is a diagnostic tool widely used to capture the abnormal activity of the heart and help with diagnoses. Assessing ECG signals may be challenging and time-consuming. Identifying abnormal ECG morphologies, especially in low amplitude curves, may be prone to error. Hence, a system that can automatically detect and assess the ECG and treadmill test ECG (TMT-ECG) signals will be helpful to the medical industry in detecting CAD. In the present work, we developed an intelligent system that can predict CAD, based on ECG and TMT signals more accurately than any other system developed thus far. The distinct convolutional neural network (CNN) architecture deals with single-lead and multi-lead (12-lead) ECG and TMT-ECG data effectively. While most artificial intelligence-based systems rely on the universal dataset, the current work used clinical lab data collected from a renowned hospital in the neighborhood. ECG and TMT-ECG graphs of normal and CAD patients were collected in the form of scanned reports. One-dimensional ECG data with all possible features were extracted from the scanned report with the help of a modified image processing method. This feature extraction procedure was integrated with the optimized architecture of the CNN model leading to a novel prediction system for CAD. The automated computer-assisted system helps in the detection and medication of CAD with a high prediction accuracy of 99%.

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3