Abstract
Abstract
Purpose of Review
Coronary artery disease (CAD) is a common and etiologically complex disease worldwide. Current guidelines for primary prevention, or the prevention of a first acute event, include relatively simple risk assessment and leave substantial room for improvement both for risk ascertainment and selection of prevention strategies. Here, we review how advances in big data and predictive modeling foreshadow a promising future of improved risk assessment and precision medicine for CAD.
Recent Findings
Artificial intelligence (AI) has improved the utility of high dimensional data, providing an opportunity to better understand the interplay between numerous CAD risk factors. Beyond applications of AI in cardiac imaging, the vanguard application of AI in healthcare, recent translational research is also revealing a promising path for AI in multi-modal risk prediction using standard biomarkers, genetic and other omics technologies, a variety of biosensors, and unstructured data from electronic health records (EHRs). However, gaps remain in clinical validation of AI models, most notably in the actionability of complex risk prediction for more precise therapeutic interventions.
Summary
The recent availability of nation-scale biobank datasets has provided a tremendous opportunity to richly characterize longitudinal health trajectories using health data collected at home, at laboratories, and through clinic visits. The ever-growing availability of deep genotype-phenotype data is poised to drive a transition from simple risk prediction algorithms to complex, “data-hungry,” AI models in clinical decision-making. While AI models provide the means to incorporate essentially all risk factors into comprehensive risk prediction frameworks, there remains a need to wrap these predictions in interpretable frameworks that map to our understanding of underlying biological mechanisms and associated personalized intervention. This review explores recent advances in the role of machine learning and AI in CAD primary prevention and highlights current strengths as well as limitations mediating potential future applications.
Funder
Foundation for the National Institutes of Health
Scripps Research Institute
Publisher
Springer Science and Business Media LLC
Subject
Pharmacology (medical),Pharmacology
Reference270 articles.
1. Tsao CW, et al. Heart disease and stroke statistics-2022 update: a report from the American Heart Association. Circulation. 2022;145:E153–639.
2. Timmis A, et al. European Society of Cardiology: cardiovascular disease statistics 2021. Eur Heart J. 2022;43:716–99.
3. Libby P. The vascular biology of atherosclerosis. In: Braunwald’s heart disease, 2 vol set: a textbook of cardiovascular medicine 12th edition. Elsevier. 2021. 425–441.
4. Morrow D.A, de Lemos J. Stable ischemic heart disease. In: Braunwald’s heart disease, 2 vol set: a textbook of cardiovascular medicine 12th edition. Elsevier. 2021. 739–785.
5. Duncker DJ, Canty Jr JM. Coronary blood flow and myocardioal ischemia. In: Braunwald’s heart disease, 2 vol set: a textbook of cardiovascular medicine 12th edition. Elsevier, 2021. 609–635.
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献