Infrared Spectroscopy–Quo Vadis?

Author:

Hlavatsch MichaelORCID,Haas Julian,Stach Robert,Kokoric VjekoslavORCID,Teuber AndreaORCID,Dinc Mehmet,Mizaikoff Boris

Abstract

Given the exquisite capability of direct, non-destructive label-free sensing of molecular transitions, IR spectroscopy has become a ubiquitous and versatile analytical tool. IR application scenarios range from industrial manufacturing processes, surveillance tasks and environmental monitoring to elaborate evaluation of (bio)medical samples. Given recent developments in associated fields, IR spectroscopic devices increasingly evolve into reliable and robust tools for quality control purposes, for rapid analysis within at-line, in-line or on-line processes, and even for bed-side monitoring of patient health indicators. With the opportunity to guide light at or within dedicated optical structures, remote sensing as well as high-throughput sensing scenarios are being addressed by appropriate IR methodologies. In the present focused article, selected perspectives on future directions for IR spectroscopic tools and their applications are discussed. These visions are accompanied by a short introduction to the historic development, current trends, and emerging technological opportunities guiding the future path IR spectroscopy may take. Highlighted state-of-the art implementations along with novel concepts enhancing the performance of IR sensors are presented together with cutting-edge developments in related fields that drive IR spectroscopy forward in its role as a versatile analytical technology with a bright past and an even brighter future.

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3