Assessment of Two Streamline Curvature Correction Methods for an Elliptic Blending Turbulence Model

Author:

Yang XianglongORCID,Liao Zhenhao,Yang LeiORCID

Abstract

Using two different methods, a previously developed elliptic blending model (the original STT k-ω-φ-α model) is modified for sensitization to streamline curvature. One method involves modifying the dissipation term in the turbulent dissipation equation, while the other constructs a new formulation for the turbulent kinetic energy production term based on an explicit algebraic stress model. The capabilities of the proposed models are evaluated by applying them to three flows with curved surfaces; namely, the two-dimensional (2D) infinite serpentine passage flow, the 2D U-turn duct flow, and the 2D periodic hill flow. The STT k-ω model with rotation and curvature correction (the STT k-ω-CC model) is also used for comparison. The computed results are compared with the relevant direct numerical simulation, experimental, and large eddy simulation data from the literature. It is found that the two proposed models significantly improve upon the original STT k-ω-φ-α model. Compared with the STT k-ω-CC model, the two proposed models produce better results in the 2D infinite serpentine passage flow and the 2D periodic hill flow. The proposed models are similarly competitive with the STT k-ω-CC model in the 2D U-turn duct flow.

Funder

the National Key R&D Program of China

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3