Validation of computational fluid dynamics simulations for determining pressure loss coefficients of ventilation components

Author:

Tawackolian Karsten1ORCID,Kriegel Martin1

Affiliation:

1. Hermann-Rietschel-Institut, Technische Universität Berlin, Berlin, Germany

Abstract

Ventilation systems include a variety of components for which necessary pressure loss data is often unavailable. Computational fluid dynamics simulations could substitute for expensive measurements, but validation simulations with suitable data are crucial to assess model uncertainties. Existing CFD validation studies either did not focus specifically on pressure losses, only covered few components, or did not include recent developments in turbulence modelling. In the present work, 33 bends, 4 gates and 2 tees were simulated using a consistent approach. Computational fluid dynamics simulations were validated with published data: rectangular high-edge and wide-edge bends from the experimental dataset of Sprenger, gates and diverging tees from the SMACMA guide. The considered flows cover important basic flow phenomena: deflection, splitting and flow separation. The 39 components were simulated with three turbulence models at 14 Reynolds numbers. The simulations predicted pressure loss coefficients accurately for various components. Cases with strong flow separation regions were most challenging. The model prediction uncertainty was assessed by carrying out simulations with three selected turbulence models. As in the experimental data from Sprenger, the simulations showed a distinct dependence of pressure loss coefficients on the Reynolds number for bends. In contrast, for abrupt deflections and flow separation at sharp edges, the Reynolds number dependency was minor.Technical pressure loss data of ductwork components is needed for the dimensioning, optimisation, and energy assessment of ventilation systems. The present validation study assesses the present state of the art of CFD simulations to determine pressure loss coefficients and the resulting prediction uncertainties.

Funder

Bundesministerium für Wirtschaft und Klimaschutz

Publisher

SAGE Publications

Subject

Building and Construction

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3