Abstract
Object detection is a fundamental task in computer vision. To improve the detection accuracy of a detection model without increasing the model weights, this paper modifies the YOLOX model by first replacing some of the traditional convolution operations in the backbone network to reduce the parameter cost of generating feature maps. We design a local feature extraction module to chunk the feature maps to obtain local image features and a global feature extraction module to calculate the correlation between feature points to enrich the feature, and add learnable weights to the feature layers involved in the final prediction to assist the model in detection. Moreover, the idea of feature map reuse is proposed to retain more information from the high-dimensional feature maps. In comparison experiments on the dataset PASCAL VOC 2007 + 2012, the accuracy of the improved algorithm increased by 1.2% over the original algorithm and 2.2% over the popular YOLOv5.
Funder
National Natural Science Foundation of China
Subject
Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science
Cited by
11 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献