Research on Water Pressure Distribution Characteristics and Lining Safety Evaluation of Deep Shaft in Water-Rich, Large, Fractured Granite Stratum

Author:

Huang Mingli,Yao Xiayi,Tan Zhongsheng,Li Jiabin

Abstract

Building deep shafts in water-rich granite formations with large fissures has difficulties, such as high-water pressure and high construction risks, and is prone to water inrush and shaft flooding. This paper relies on the No. 1 vertical auxiliary shaft project of Gaoligongshan tunnel and obtains the uneven distribution of water pressure on the outside of the lining in the horizontal direction through on-site monitoring data. In order to explain this phenomenon, based on the statistical parameters of actual fractures in the field and the Monte Carlo method, the DFN built in FLAC3D6.0 is used to generate a discrete fracture network, and a dual medium model, considering the distribution of large fractures, is established. The reason for the uneven distribution of water pressure is obtained through research: the large fissures in the surrounding rock make the hydraulic conductivity of each part of the stone body formed after grouting of the surrounding rock different. This results in different osmotic pressures from the hydrostatic pressure outside the grouting ring to the outside of the lining through the grouting ring. Based on the distribution characteristics of water pressure outside the lining, the safety of the lining under non-uniform pressure is studied. The lining safety factor is defined as the ratio of the lining’s normal service limit state load to the actual load. The normal service limit state load is the load when the RFPA software is used to establish a load-structure model to simulate the load when the lining has obvious cracks under the action of external load; the actual load is the monitoring load. The new method and mine design code method are used to evaluate the lining safety and make a comparative analysis. The results show that the new method can effectively calculate the lining safety factor and has a larger safety reserve.

Funder

The authors acknowledge the financial support provided by the National key R & D program funding

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Reference38 articles.

1. Experimental Study on Water and Soil Pressure Model of Deep Shaft Construction in Highly Permeable Stratum;Ren;Master’s Thesis,2015

2. Water rich characteristics and water inflow calculation of a coal mine aquifer in Xinjiang;Ru;China Water Transp.,2012

3. Study on Collapse Mechanism of Mixed shaft in Yixin Mine;Lu;Ph.D. Thesis,2008

4. Porous media equivalents for networks of discontinuous fractures

5. Numerical comparison of the equivalent continuum, non-homogeneous and dual porosity models for flow and transport in fractured porous media

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3