Abstract
Photomechanical materials perform mechanical work in response to illumination. Photoisomerization-based photomechanical materials may operate in different regimes depending on the intensity of the illuminating light. We examine the photoresponse of liquid crystalline azo-acrylate networks and show that a material property, the characteristic intensity of the material, defines the boundaries between different regimes. Asymptotic analysis indicates that whereas at low relative light levels, photostress is proportional to intensity, at high levels, it is proportional to fluence. Model predictions are in good agreement with the experimental results.
Subject
Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science
Cited by
7 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献