Photochemically Induced Propulsion of a 4D Printed Liquid Crystal Elastomer Biomimetic Swimmer

Author:

Sartori Paolo1ORCID,Yadav Rahul Singh2,del Barrio Jesús2ORCID,DeSimone Antonio34,Sánchez‐Somolinos Carlos15ORCID

Affiliation:

1. Instituto de Nanociencia y Materiales de Aragón (INMA), CSIC‐Universidad de Zaragoza Departamento de Física de la Materia Condensada Zaragoza 50009 Spain

2. Instituto de Nanociencia y Materiales de Aragón (INMA), CSIC‐Universidad de Zaragoza Departamento de Química Orgánica Zaragoza 50009 Spain

3. The BioRobotics Institute Scuola Superiore Sant'Anna Pisa 56127 Italy

4. SISSA‐Scuola Internazionale Superiore di Studi Avanzati Trieste 34136 Italy

5. Centro de Investigación Biomédica en Red de Bioingeniería, Biomateriales y Nanomedicina Instituto de Salud Carlos III Zaragoza 50018 Spain

Abstract

AbstractUnderwater organisms exhibit sophisticated propulsion mechanisms, enabling them to navigate fluid environments with exceptional dexterity. Recently, substantial efforts have focused on integrating these movements into soft robots using smart shape‐changing materials, particularly by using light for their propulsion and control. Nonetheless, challenges persist, including slow response times and the need of powerful light beams to actuate the robot. This last can result in unintended sample heating and potentially necessitate tracking specific actuation spots on the swimmer. To tackle these challenges, new azobenzene‐containing photopolymerizable inks are introduced, which can be processed by extrusion printing into liquid crystalline elastomer (LCE) elements of precise shape and morphology. These LCEs exhibit rapid and significant photomechanical response underwater, driven by moderate‐intensity ultraviolet (UV) and green light, being the actuation mechanism predominantly photochemical. Inspired by nature, a biomimetic four‐lapped ephyra‐like LCE swimmer is printed. The periodically illumination of the entire swimmer with moderate‐intensity UV and green light, induces synchronous lappet bending toward the light source and swimmer propulsion away from the light. The platform eliminates the need of localized laser beams and tracking systems to monitor the swimmer's motion through the fluid, making it a versatile tool for creating light‐fueled robotic LCE free‐swimmers.

Funder

H2020 European Research Council

Centro de Investigación Biomédica en Red en Bioingeniería, Biomateriales y Nanomedicina

Departamento de Educación, Cultura y Deporte, Gobierno de Aragón

Ministerio de Ciencia e Innovación

H2020 Marie Skłodowska-Curie Actions

Gobierno de Aragón

Publisher

Wiley

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3