Closed‐Loop Recyclable and Totally Renewable Liquid Crystal Networks with Room‐Temperature Programmability and Reconfigurable Functionalities

Author:

Zhang Chenxuan1,Zhang Zhuoqiang1,Liu Xiaokong1ORCID

Affiliation:

1. State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry Jilin University Changchun 130012 P. R. China

Abstract

AbstractDynamic covalent liquid crystal networks (DCv‐LCNs) with straightforward (re)programmability, reprocessability, and recyclability facilitates the manufacture of sophisticated LCN actuators and intelligent robots. However, the DCv‐LCNs are still limited to heat‐assisted programming and polymer‐to‐polymer reprocessing/recycling, which inevitably lead to deterioration of the LCN structures and the actuation performances after repeated programming/processing treatments, owing to the thermal degradation of the polymer network and/or external agent interference. Here, a totally renewable azobenzene‐based DCv‐LCN with room‐temperature programmability and polymer‐to‐monomers chemical recyclability is reported, which was synthesized by crosslinking the azobenzene‐containing dibenzaldehyde monomer and the triamine monomer via the dynamic and dissociable imine bonds. Thanks to the water‐activated dynamics of the imine bonds, the resultant DCv‐LCN can be simply programmed, upon water‐soaking at room temperature, to yield a UV/Vis light‐driven actuator. Importantly, the reported DCv‐LCN undergoes depolymerization in an acid‐solvent medium at room temperature because of the acid‐catalyzed hydrolysis of the imine bonds, giving rise to easy separation and recovery of both monomers in high purity, even with tolerance to additives. The recovered pure monomers can be used to regenerate totally new DCv‐LCNs and actuators, and their functionalities can be reconfigured by removing old and introducing new additives, by implementing the closed‐loop polymer‐monomers‐polymer recycling.

Funder

National Key Research and Development Program of China

National Natural Science Foundation of China

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3