Sialic Acids: An Important Family of Carbohydrates Overlooked in Environmental Biofilms

Author:

Pinel Ingrid S.M.ORCID,Kleikamp Hugo B.C.,Pabst Martin,Vrouwenvelder Johannes S.,van Loosdrecht Mark C.M.ORCID,Lin Yuemei

Abstract

Sialic acids in the structural matrix of biofilms developing in engineered water systems constitute a potential target in the battle against biofouling. This report focuses specifically on the presence of sialic acids as part of the extracellular polymeric substances (EPS) of biofilms forming in cooling towers and the potential effect of nutrient starvation on sialic acid presence and abundance. Two cooling water compositions were compared in parallel pilot-scale cooling towers, one poor in nutrients and one enriched in nutrients. Fresh deposits from the two cooling towers were collected after a five-week operation period. EPS extractions and analyses by Fourier transform infrared spectroscopy (FTIR) and high-resolution mass spectrometry (MS), along with 16S rRNA gene amplicon sequencing were performed. The results of MS analyses showed the presence of pseudaminic/legionaminic acids (Pse/Leg) and 2-keto-3-deoxy-d-glycero-d-galacto-nononic acid (KDN) in both biofilm EPS samples. FTIR measurements showed the characteristic vibration of sialic acid-like compounds ν(C=O)OH in the nutrient poor sample exclusively. Our findings, combined with other recent studies, suggest that bacterial sialic acids are common compounds in environmental biofilms. Additionally, the conservation of sialic acid production pathways under nutrient starvation highlights their importance as constituents of the EPS. Further in-depth studies are necessary to understand the role of sialic acids in the structural cohesion and protection of environmental biofilm layer.

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3