Optimizing Automatic Transmission Double-Transition Shift Process Based on Multi-Objective Genetic Algorithm

Author:

Zhang HengORCID,Zhao XinxinORCID,Yang JueORCID,Zhang Wenming

Abstract

In order to improve fuel economy, the number of gears in the hydraulic automatic transmission of heavy-duty mining trucks is continuously increasing. Compared with single-transition shifts, double-transition shifts can optimize the structure of multi-speed transmissions, but the difficulty of control will also increase. In this paper, a dynamic model of a 6 + 2 speed automatic transmission and vehicle powertrain system are built based on the Lagrange method, and the dynamic analysis of the two sets of clutches that make up the double-transition shift are carried out. Since a simulation model of the double-transition shift process is built-in MATLAB/Simulink, the shift jerk and clutch energy loss are used as multi-objective, and the genetic algorithm is used to optimize the simulation. Five strategies for the overlapping time of the clutches are proposed, and simulation experiments and Pareto optimal analysis are carried out, respectively. The simulation results show that the non-overlapping of the two sets of clutch inertia phases in the double-transition shift can effectively reduce the shift jerk. The overlapping of the torque phase and the inertia phase of the other clutch set can control the clutch energy loss at a low level due to using less shift time.

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Cited by 14 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3