Stress Transfer Mechanism of Flange in Split Hopkinson Tension Bar

Author:

Shin HyunhoORCID,Kim Sanghoon,Kim Jong-Bong

Abstract

To reveal the stress transfer mechanism of the flange in a split Hopkinson tension bar, explicit finite element analyses of the impact of the hollow striker on the flange were performed across a range of flange lengths. The tensile stress profiles monitored at the strain gauge position of the incident bar are interpreted on a qualitative basis using three types of stress waves: bar (B) waves, flange (F) waves, and a series of reverberation (Rn) waves. When the flange length (Lf) is long (i.e., Lf > Ls, where Ls is the striker length), the B wave and first reverberation wave (R1) are fully separated in the time axis. When the flange length is intermediate (~Db < Lf < Ls, where Db is the bar diameter), the B and F waves are partially superposed; the F wave is delayed, then followed by a series of Rn waves after the superposition period. When the flange length is short (Lf < ~Db), the B and F waves are practically fully superposed and form a pseudo-one-step pulse, indicating the necessity of a short flange length to achieve a neat tensile pulse. The magnitudes and periods of the monitored pulses are consistent with the analysis results using the one-dimensional impact theory, including a recently formulated equation for impact-induced stress when the areas of the striker and bar are different, equations for the reflection/transmission ratios of a stress wave, and an equation for pulse duration time. This observation verifies the flange length-dependent stress transfer mechanism on a quantitative basis.

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3