Sound Speed and Poisson’s Ratio Calibration of (Split) Hopkinson Bar via Iterative Dispersion Correction of Elastic Wave

Author:

Shin Hyunho1

Affiliation:

1. Mechanics of Materials and Design Laboratory, Department of Materials Engineering, Gangneung-Wonju National University, 7 Jugheon-ghil, Gangneung, Gangwon-do 25457, South Korea

Abstract

AbstractA process of calibrating a one-dimensional sound speed (co) and Poisson’s ratio (ν) of a (split) Hopkinson bar is presented. This process consists of Fourier synthesis and iterative dispersion correction (time-domain phase shift) of the elastic pulse generated by the striker impact on a circular bar. At each iteration, a set of co and ν is assumed, and the sound speed versus frequency (cdc versus fdc) relationship under the assumed set is obtained using the Pochhammer–Chree equation solver developed herein for ground state excitation. Subsequently, each constituting wave of the overall elastic pulse is phase shifted (dispersion corrected) using the cdc–fdc relationship. The co and ν values of the bar are determined in the iteration process when the dispersion-corrected overall pulse profiles are reasonably consistent with the measured profiles at two travel distances in the bar. The observed consistency of the predicted (dispersion-corrected) wave profiles with the measured profiles is a mutually self-consistent verification of (i) the calibrated values of co and ν, and (ii) the combined theories of Fourier and Pochhammer–Chree. The contributions of the calibrated values of co and ν to contemporary bar technology are discussed, together with the physical significance of the tail part of a traveling wave according to the combined theories. A preprocessing template (in Excel®) and calibration platform (in matlab®) for the presented calibration process are openly available online in a public repository.

Funder

National Research Foundation of Korea

Publisher

ASME International

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3