A Fast Laser Adjustment-Based Laser Triangulation Displacement Sensor for Dynamic Measurement of a Dispensing Robot

Author:

Nan ZhuojiangORCID,Tao Wei,Zhao Hui,Lv Na

Abstract

Height measurement and location by a laser sensor is a key technology to ensure accurate and stable operation of a dispensing robot. In addition, alternation of dynamic and static working modes of a robot, as well as variation of surface and height of a workpiece put forward strict requirements for both repeatability and respond speed of the location system. On the basis of the principle of laser triangulation, a displacement sensor applied to a dispensing robot was developed, and a fast laser adjustment algorithm was proposed according to the characteristics of static and dynamic actual laser imaging waveforms on different objects. First, the relationship between the centroid position of static waveform and peak intensity for different measured objects was fitted by least square method, and the intersection point of each curve was solved to confirm the ideal peak intensity, and therefore reduce the interference of different measured objects. Secondly, according to the dynamic centroid difference threshold of two adjacent imaging waveforms, the static and dynamic working modes of the sensor were distinguished, and the peak intensity was adjusted to different intervals by linear iteration. Finally, a Z direction reciprocating test, color adaptability test, and step response test were carried out on the dispensing robot platform; the experiments showed that the repeatability accuracy of the sensor was 2.7 um and the dynamic step response delay was 0.5 ms.

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Stitching Locally Fitted T-Splines for Fast Fitting of Large-Scale Freeform Point Clouds;Sensors;2023-12-14

2. Double Focus Laser Displacement Sensor Suppressing Laser Jitter and Target Tilt;Journal of Shanghai Jiaotong University (Science);2023-08-15

3. Automatic Digital Inclinometer Calibration System Based on Image Recognition;Journal of Shanghai Jiaotong University (Science);2023-03-21

4. Special Issue on Manufacturing Metrology;Applied Sciences;2021-11-12

5. Enabling Cyber-attack Mitigation Techniques in a Software Defined Network;2021 IEEE International Conference on Cyber Security and Resilience (CSR);2021-07-26

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3