H-scan Subtraction Doppler Imaging: A Novel Ultrasound Small Blood Vessel Flow Characterization with Scattering and Reflection Identification

Author:

Jiao YangORCID,Zhang Derong,Xu Yiwen,Chen YangORCID,Wu Zhe,Cui YaoyaoORCID

Abstract

Ultrafast compound Doppler imaging (UCDI), which can be used to acquire Doppler information at very high spatial and temporal sampling rates, provides a great improvement to the characterization of the vasculature. The singular value decomposition (SVD) technique takes advantage of the different features of tissue and blood motion in terms of spatiotemporal coherence and strongly outperforms conventional clutter rejection filters in small animals. However, a major challenge of conventional UCDI with SVD clutter filtering for small vessel imaging is that it is not sensitive enough to detect the hemodynamic changes in deep tissue where the majority of the remaining signal is usually noise-saturated. In this study, with the first attempt to apply ultrasonic tissue characterization techniques to UCDI, we propose an H-scan subtraction Doppler imaging method to bypass the limitations associated with the high-order singular value thresholding selection and improve the image quality of fine vessels. The flow phantom experiments with different blood concentrations show that H-Scan is capable of estimating the relative size and spatial distribution of acoustic scattering objects. In the in vivo rabbit brain experiment, the H-Doppler method, together with the global and block-wise local SVD clutter filtering, are proposed to facilitate better power Doppler images with a significant improvement of background noise suppression. These results demonstrate that the contrast-to-noise-ratio (CNR) of the H-scan subtraction Doppler imaging is 15% to 65% higher than that of the conventional UCDI methods. Therefore, this approach can be potentially applied to the clinical applications of the functional ultrasound (fUS) imaging method.

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3