Abstract
Ultrafast compound Doppler imaging (UCDI), which can be used to acquire Doppler information at very high spatial and temporal sampling rates, provides a great improvement to the characterization of the vasculature. The singular value decomposition (SVD) technique takes advantage of the different features of tissue and blood motion in terms of spatiotemporal coherence and strongly outperforms conventional clutter rejection filters in small animals. However, a major challenge of conventional UCDI with SVD clutter filtering for small vessel imaging is that it is not sensitive enough to detect the hemodynamic changes in deep tissue where the majority of the remaining signal is usually noise-saturated. In this study, with the first attempt to apply ultrasonic tissue characterization techniques to UCDI, we propose an H-scan subtraction Doppler imaging method to bypass the limitations associated with the high-order singular value thresholding selection and improve the image quality of fine vessels. The flow phantom experiments with different blood concentrations show that H-Scan is capable of estimating the relative size and spatial distribution of acoustic scattering objects. In the in vivo rabbit brain experiment, the H-Doppler method, together with the global and block-wise local SVD clutter filtering, are proposed to facilitate better power Doppler images with a significant improvement of background noise suppression. These results demonstrate that the contrast-to-noise-ratio (CNR) of the H-scan subtraction Doppler imaging is 15% to 65% higher than that of the conventional UCDI methods. Therefore, this approach can be potentially applied to the clinical applications of the functional ultrasound (fUS) imaging method.
Subject
Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献