Abstract
Disruptions in tokamaks are very often associated with the slowing down of magneto-hydrodynamic (MHD) instabilities and their subsequent locking to the wall. To improve the understanding of the chain of events ending with a disruption, a statistically robust and physically based criterion has been devised to track the slowing down of modes with toroidal mode numbers n = 1 and mostly poloidal mode number m = 2, providing an alternative and earlier detection tool compared to simple threshold based indicators. A database of 370 discharges of axially symmetric divertor experiment—upgrade (AUG) has been studied and results compared with other indicators used in real time. The estimator is based on a weighted average value of the fast Fourier transform of the perturbed radial n = 1 magnetic field, caused by the rotation of the modes. The use of a carrier sinusoidal wave helps alleviating the spurious influence of non-sinusoidal magnetic perturbations induced by other instabilities like Edge localized modes (ELMs). The indicator constitutes a good candidate for further studies including machine learning approaches for mitigation and avoidance since, by deploying it systematically to evaluate the time instance for the expected locking, multi-machine databases can be populated. Furthermore, it can be thought as a contribution to a wider approach to dynamically tracking the chain of events leading to disruptions.
Subject
Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science
Cited by
4 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献