Influence of Aluminum and Copper on Mechanical Properties of Biocompatible Ti-Mo Alloys: A Simulation-Based Investigation

Author:

Ashkani Omid1ORCID,Tavighi Mohammad Reza2ORCID,Karamimoghadam Mojtaba3,Moradi Mahmoud4ORCID,Bodaghi Mahdi5ORCID,Rezayat Mohammad6ORCID

Affiliation:

1. Department of Materials Science and Engineering, Faculty of Engineering, Islamic Azad University, Science and Research Branch, Tehran 1477893855, Iran

2. Department of Materials Science and Engineering, Faculty of Engineering, Islamic Azad University, Karaj 3149968111, Iran

3. Department of Mechanics, Mathematics and Management, Polytechnic University of Bari, Via Orabona 4, 70125 Bari, Italy

4. Faculty of Arts, Science and Technology, University of Northampton, Northampton NN1 5PH, UK

5. Department of Engineering, School of Science and Technology, Nottingham Trent University, Nottingham NG11 8NS, UK

6. Center for Structural Integrity, Micromechanics, and Reliability of Materials (CIEFMA)-Department of Materials Science and Engineering, Universitat Politècnica de Catalunya-BarcelonaTECH, 08019 Barcelona, Spain

Abstract

The use of titanium and titanium-based alloys in the human body due to their resistance to corrosion, implant ology and dentistry has led to significant progress in promoting new technologies. Regarding their excellent mechanical, physical and biological performance, new titanium alloys with non-toxic elements and long-term performance in the human body are described today. The main compositions of Ti-based alloys and properties comparable to existing classical alloys (C.P. TI, Ti-6Al-4V, Co-Cr-Mo, etc.) are used for medical applications. The addition of non-toxic elements such as Mo, Cu, Si, Zr and Mn also provides benefits, such as reducing the modulus of elasticity, increasing corrosion resistance and improving biocompatibility. In the present study, when choosing Ti-9Mo alloy, aluminum and copper (Cu) elements were added to it. These two alloys were chosen because one element is considered a favorable element for the body (copper) and the other element is harmful to the body (aluminum). By adding the copper alloy element to the Ti-9Mo alloy, the elastic modulus decreases to a minimum value of 97 GPa, and the aluminum alloy element increases the elastic modulus up to 118 GPa. Due to their similar properties, Ti-Mo-Cu alloys are found to be a good optional alloy to use.

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Mechanical Engineering,Control and Systems Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3