Affiliation:
1. College of Materials Science and Engineering, Chongqing University, Chongqing 400030, China
2. College of Materials Science and Engineering, Northwest Polytechnical University, Xi’an 710072, China
Abstract
In order to explore the casting technology of a high–strength aluminum alloy, the effects of nickel on the solidified microstructure and tensile properties of a 7075 aluminum alloy were studied. 7075 aluminum alloys without nickel and with 0.6% and 1.2% nickel were prepared by a casting method. The results showed that the increase of Ni content in the 7075 alloys increased the liquidus temperatures, primary α (Al) grains were refined significantly, and the divorced eutectic structure was gradually formed among α (Al) grains with the preformation of the Al3Ni phase. In comparison, the 7075 alloy with 0.6% nickel content had less intergranular shrinkage porosity, and its elongation and ultimate tensile strength was enhanced 45% and 105% higher than those of the as-cast 7075 aluminum alloy, respectively. When the Ni content was increased to 1.2%, the eutectic phases of the alloy became much coarser compared to the other two alloys, and the mechanical properties obviously reduced too.
Funder
State Key Laboratory of Solidification Processing in NPU
National Natural Science Foundation of China
Subject
Inorganic Chemistry,Condensed Matter Physics,General Materials Science,General Chemical Engineering
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献