Modal-Transition-Induced Valleys of K2 in Piezoelectric Bilayer Laterally Vibrating Resonators

Author:

Xie Zihao1ORCID,Sun Jiabao2,Xie Jin1

Affiliation:

1. State Key Laboratory of Fluid Power and Mechatronic Systems, Zhejiang University, Hangzhou 310027, China

2. Micro-Nano Fabrication Center, Zhejiang University, Hangzhou 310027, China

Abstract

Piezoelectric Laterally Vibrating Resonators (LVRs) have attracted significant attention as a potential technology for next-generation wafer-level multi-band filters. Piezoelectric bilayer structures such as Thin-film Piezoelectric-on-Silicon (TPoS) LVRs which aim to increase the quality factor (Q) or aluminum nitride and silicon dioxide (AlN/SiO2) composite membrane for thermal compensation have been proposed. However, limited studies have investigated the detailed behaviors of the electromechanical coupling factor (K2) of these piezoelectric bilayer LVRs. Herein, AlN/Si bilayer LVRs are selected as an example, we observed notable degenerative valleys in K2 at specific normalized thicknesses using two-dimensional finite element analysis (FEA), which has not been reported in the previous studies of bilayer LVRs. Moreover, the bilayer LVRs should be designed away from the valleys to minimize the reduction in K2. Modal-transition-induced mismatch between electric and strain fields of AlN/Si bilayer LVRs are investigated to interpret the valleys from energy considerations. Furthermore, the impact of various factors, including electrode configurations, AlN/Si thickness ratios, the Number of Interdigitated Electrode (IDT) Fingers (NFs), and IDT Duty Factors (DFs), on the observed valleys and K2 are analyzed. These results can provide guidance for the designs of piezoelectric LVRs with bilayer structure, especially for LVRs with a moderate K2 and low thickness ratio.

Funder

National Natural Science Foundation of China

National Key R&D Program of China

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Mechanical Engineering,Control and Systems Engineering

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3