Affiliation:
1. Department of Mechanical Engineering, University of Texas at Tyler, 3900 University Blvd., Tyler, TX 75799, USA
Abstract
Energy harvesting effectively powers micro-sensors and wireless applications. However, higher frequency oscillations do not overlap with ambient vibrations, and low power can be harvested. This paper utilizes vibro-impact triboelectric energy harvesting for frequency up-conversion. Two magnetically coupled cantilever beams with low and high natural frequencies are used. The two beams have identical tip magnets at the same polarity. A triboelectric energy harvester is integrated with the high-frequency beam to generate an electrical signal via contact-separation impact motion between the triboelectric layers. An electrical signal is generated at the low-frequency beam range achieving frequency up-converter. The two degrees of freedom (2DOF) lumped-parameter model system is used to investigate the system’s dynamic behavior and the corresponding voltage signal. The static analysis of the system revealed a threshold distance of 15 mm that divides the system into monostable and bistable regimes. In the monostable and bistable regimes, softening and hardening behaviors were observed at low frequencies. Additionally, the threshold voltage generated was increased by 1117% in comparison with the monostable regime. The simulation findings were experimentally validated. The study demonstrates the potential of using triboelectric energy harvesting in frequency up-converting applications.
Subject
Electrical and Electronic Engineering,Mechanical Engineering,Control and Systems Engineering
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献