Microstructure and Mechanical Properties of Sintered and Heat-Treated HfNbTaTiZr High Entropy Alloy

Author:

Málek JaroslavORCID,Zýka JiříORCID,Lukáč FrantišekORCID,Čížek JakubORCID,Kunčická Lenka,Kocich Radim

Abstract

High entropy alloys (HEAs) have attracted researchers’ interest in recent years. The aim of this work was to prepare the HfNbTaTiZr high entropy alloy via the powder metallurgy process and characterize its properties. The powder metallurgy process is a prospective solution for the synthesis of various alloys and has several advantages over arc melting (e.g., no dendritic structure, near net-shape, etc.). Cold isostatic pressing of blended elemental powders and subsequent sintering at 1400 °C for various time periods up to 64 h was used. Certain residual porosity, as well as bcc2 (Nb- and Ta-rich) and hcp (Zr- and Hf-rich) phases, remained in the bcc microstructure after sintering. The bcc2 phase was completely eliminated during annealing (1200 °C/1h) and subsequent water quenching. The hardness values of the sintered specimens ranged from 300 to 400 HV10. The grain coarsening during sintering was significantly limited and the maximum average grain diameter after 64 h of sintering was approximately 60 μm. The compression strength at 800 °C was 370 MPa and decreased to 47 MPa at 1200 °C. Porosity can be removed during the hot deformation process, leading to an increase in hardness to ~450 HV10.

Publisher

MDPI AG

Subject

General Materials Science,Metals and Alloys

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3