High-Pressure Torsion: A Path to Refractory High-Entropy Alloys from Elemental Powders

Author:

Mazilkin Andrey1ORCID,Ferdowsi Mahmoud R. G.2,Boltynjuk Evgeniy1,Kulagin Roman1,Lapovok Rimma2ORCID

Affiliation:

1. Institute of Nanotechnology, Karlsruhe Institute of Technology, 76344 Eggenstein-Leopoldshafen, Germany

2. Institute for Frontier Materials, Deakin University, Waurn Ponds, VIC 3216, Australia

Abstract

For the first time, the refractory high-entropy alloys with equiatomic compositions, HfNbTaTiZr and HfNbTiZr, were synthesized directly from a blend of elemental powders through ten revolutions of high-pressure torsion (HPT) at room temperature. This method has demonstrated its effectiveness and simplicity not only in producing solid bulk materials but also in manufacturing refractory high-entropy alloys (RHEAs). Unlike the melting route, which typically results in predominantly single BCC phase alloys, both systems formed new three-phase alloys. These phases were defined as the Zr-based hcp1 phase, the α-Ti-based hcp2 phase, and the Nb-based bcc phase. The volume fraction of the phases was dependent on the accumulated plastic strain. The thermal stability of the phases was studied by annealing samples at 500 °C for one hour, which resulted in the formation of a mixed structure consisting of the new two hexagonal and cubic phases.

Funder

Volkswagen Foundation under cooperative project

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3