Robust 3D Hand Detection from a Single RGB-D Image in Unconstrained Environments

Author:

Xu ChiORCID,Zhou JunORCID,Cai WendiORCID,Jiang YunkaiORCID,Li YongboORCID,Liu YiORCID

Abstract

Three-dimensional hand detection from a single RGB-D image is an important technology which supports many useful applications. Practically, it is challenging to robustly detect human hands in unconstrained environments because the RGB-D channels can be affected by many uncontrollable factors, such as light changes. To tackle this problem, we propose a 3D hand detection approach which improves the robustness and accuracy by adaptively fusing the complementary features extracted from the RGB-D channels. Using the fused RGB-D feature, the 2D bounding boxes of hands are detected first, and then the 3D locations along the z-axis are estimated through a cascaded network. Furthermore, we represent a challenging RGB-D hand detection dataset collected in unconstrained environments. Different from previous works which primarily rely on either the RGB or D channel, we adaptively fuse the RGB-D channels for hand detection. Specifically, evaluation results show that the D-channel is crucial for hand detection in unconstrained environments. Our RGB-D fusion-based approach significantly improves the hand detection accuracy from 69.1 to 74.1 comparing to one of the most state-of-the-art RGB-based hand detectors. The existing RGB- or D-based methods are unstable in unseen lighting conditions: in dark conditions, the accuracy of the RGB-based method significantly drops to 48.9, and in back-light conditions, the accuracy of the D-based method dramatically drops to 28.3. Compared with these methods, our RGB-D fusion based approach is much more robust without accuracy degrading, and our detection results are 62.5 and 65.9, respectively, in these two extreme lighting conditions for accuracy.

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3