Abstract
Three-dimensional hand detection from a single RGB-D image is an important technology which supports many useful applications. Practically, it is challenging to robustly detect human hands in unconstrained environments because the RGB-D channels can be affected by many uncontrollable factors, such as light changes. To tackle this problem, we propose a 3D hand detection approach which improves the robustness and accuracy by adaptively fusing the complementary features extracted from the RGB-D channels. Using the fused RGB-D feature, the 2D bounding boxes of hands are detected first, and then the 3D locations along the z-axis are estimated through a cascaded network. Furthermore, we represent a challenging RGB-D hand detection dataset collected in unconstrained environments. Different from previous works which primarily rely on either the RGB or D channel, we adaptively fuse the RGB-D channels for hand detection. Specifically, evaluation results show that the D-channel is crucial for hand detection in unconstrained environments. Our RGB-D fusion-based approach significantly improves the hand detection accuracy from 69.1 to 74.1 comparing to one of the most state-of-the-art RGB-based hand detectors. The existing RGB- or D-based methods are unstable in unseen lighting conditions: in dark conditions, the accuracy of the RGB-based method significantly drops to 48.9, and in back-light conditions, the accuracy of the D-based method dramatically drops to 28.3. Compared with these methods, our RGB-D fusion based approach is much more robust without accuracy degrading, and our detection results are 62.5 and 65.9, respectively, in these two extreme lighting conditions for accuracy.
Subject
Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry
Cited by
7 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献