Abstract
Pancreatic beta cells are highly susceptible to oxidative stress, which plays a crucial role in diabetes outcomes. Progress has been slow to identify molecules that could be utilized to enhance cell survival and function under oxidative stress. Itaconate, a byproduct of the tricarboxylic acid cycle, has both anti-inflammatory and antioxidant properties. The effects of itaconate on beta cells under oxidative stress are relatively unknown. We explored the effects of 4-octyl itaconate—a cell-permeable derivative of itaconate—on MIN6 (a beta cell model) under oxidative stress conditions caused by hypoxia, along with its mechanism of action. Treatment with 4-OI reversed hypoxia-induced cell death, reduced ROS production, and inhibited cell death pathway activation and inflammatory cytokine secretion in MIN6 cells. The 4-OI treatment also suppressed lactate dehydrogenase A (LDHA)activity, which increases under hypoxia. Treatment of cells with the ROS scavenger NAC and LDHA-specific inhibitor FX-11 reproduced the beneficial effects of 4-OI on MIN6 cell viability under oxidative stress conditions, confirming its role in regulating ROS production. Conversely, overexpression of LDHA reduced the beneficial effects exerted by 4-OI on cells. Our findings provide a strong rationale for using 4-OI to prevent the death of MIN6 cells under oxidative stress.
Funder
National key research and development program
National Natural Science Foundation of China
Natural Science Foundation of Hunan Province, China
Subject
Molecular Biology,Biochemistry
Cited by
5 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献