Hu-Zhang Qing-Mai Formulation anti-oxidative stress alleviates diabetic retinopathy: Network pharmacology analysis and in vitro experiment

Author:

Wu Xiaoyu1,Mu Lin2,Dong Zhiguo1,Wu Jiajun1,Zhang Shuyan1,Su Jing1,Zhang Yinjian1ORCID

Affiliation:

1. Department of Ophthalmology, Longhua Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China

2. Department of Ophthalmology, Eye & ENT Hospital, Fudan University, Shanghai, China.

Abstract

Background: In this study, the potential mechanism of the Hu-Zhang Qing-Mai Formulation (HZQMF) on diabetic retinopathy (DR) in inhibiting oxidative stress was explored through network pharmacology analysis and in vitro experiments. Methods: The Traditional Chinese Medicine Systematic Pharmacology Analysis Platform was used to retrieve the active pharmaceutical ingredients and targets of HZQMF. DR-related genes and oxidative stress-related genes were obtained from PharmGKB, TTD, OMIM, GeneCards, and Drugbank. STRING was used to construct a protein–protein interaction network to screen core targets. Gene ontology and Kyoto encyclopedia of genes and genomes enrichment analyses were performed using R 4.0.3. Network topology analysis was carried out using Cytoscape 3.8.2. Finally, we looked into how well the main API protected human retinal pigment epithelial cells from damage brought on by hydrogen peroxide (H2O2). Results: Quercetin (Que) was identified as the primary API of HZQMF through network pharmacology analysis, while JUN, MAPK1, and STAT3 were identified as the primary hub genes. Kyoto encyclopedia of genes and genomes enrichment analysis showed that the AGE-RAGE signaling pathway may be crucial to the therapeutic process. In vitro experiments confirmed that Que increased cell vitality and inhibited apoptosis. Conclusion: Que might significantly reduce H2O2-induced ARPE-19 cell injury by inhibiting apoptosis-related genes of the AGE-RAGE pathway (JUN, MAPK1, STAT3). This study lays the foundation for further research on HZQMF in treating DR.

Publisher

Ovid Technologies (Wolters Kluwer Health)

Subject

General Medicine

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3