Author:
Zhou Ting,Liu Zhiyong,Jin Juliang,Hu Hongxiang
Abstract
Flood frequency analysis plays a fundamental role in dam planning, reservoir operation, and risk assessment. However, conventional univariate flood frequency analysis carried out by flood peak inflow or volume does not account for the dependence between flood properties. In this paper, we proposed an integrated approach to estimate reservoir risk by combining the copula-based bivariate flood frequency (peak and volume) and reservoir routing. Through investigating the chain reaction of “flood frequency—reservoir operation-flood risk”, this paper demonstrated how to simulate flood hydrographs using different frequency definitions (copula “Or” and “And” scenario), and how these definitions affect flood risks. The approach was applied to the Meishan reservoir in central China. A set of flood hydrographs with 0.01 frequency under copula “Or” and “And” definitions were constructed, respectively. Upstream and downstream flood risks incorporating reservoir operation were calculated for each scenario. Comparisons between flood risks from univariate and bivariate flood frequency analysis showed that bivariate flood frequency analysis produced less diversity in the results, and thus the results are more reliable in risk assessment. More importantly, the peak-volume combinations in a bivariate approach can be adjusted according to certain prediction accuracy, providing a flexible estimation of real-time flood risk under different prediction accuracies and safety requirements.
Funder
National Science Fund of China
National Science and Technology Major Project of China
Subject
Water Science and Technology,Aquatic Science,Geography, Planning and Development,Biochemistry
Cited by
8 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献