A Hybrid Optimization Approach for Autonomy Enhancement of Nearly-Zero-Energy Buildings Based on Battery Performance and Artificial Neural Networks

Author:

Georgiou Giorgos S.ORCID,Nikolaidis Pavlos,Kalogirou Soteris A.,Christodoulides PaulORCID

Abstract

Reducing the primary energy consumption in buildings and simultaneously increasing self-consumption from renewable energy sources in nearly-zero-energy buildings, as per the 2010/31/EU directive, is crucial nowadays. This work solved the problem of nearly zeroing the net grid electrical energy in buildings in real time. This target was achieved using linear programming (LP)—a convex optimization technique leading to global solutions—to optimally decide the daily charging or discharging (dispatch) of the energy storage in an adaptive manner, in real time, and hence control and minimize both the import and export grid energies. LP was assisted by equally powerful methods, such as artificial neural networks (ANN) for forecasting the building’s load demand and photovoltaic (PV) on a 24 hour basis, and genetic algorithm (GA)—a heuristic optimization technique—for driving the optimum dispatch. Moreover, to address the non-linear nature of the battery and model the energy dispatch in a more realistic manner, the proven freeware system advisor model (SAM) of National Renewable Energy Laboratory (NREL) was integrated with the proposed approach to give the final dispatch. Assessing the case of a building, the results showed that the annual hourly profile of the import and export energies was smoothed and flattened, as compared to the cases without storage and/or using a conventional controller. With the proposed approach, the annual aggregated grid usage was reduced by 53% and the building’s annual energy needs were covered by the renewable energy system at a rate of 60%. It was therefore concluded that the proposed hybrid methodology can provide a tool to maximize the autonomy of nearly-zero-energy buildings and bring them a step closer to implementation.

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous)

Reference47 articles.

1. Energy Performance of Buildings Directive https://ec.europa.eu/energy/topics/energy-efficiency/energy-efficient-buildings/energy-performance-buildings-directive_en

2. Decision No 406/2009/EC of the European Parliament and of the Council of 23 April 2009 on the effort of Member States to reduce their greenhouse gas emissions to meet the Community’s greenhouse gas emission reduction commitments up to 2020;Off. J. Eur. Union,2009

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3