Comparative Analysis of Ground-Mounted vs. Rooftop Photovoltaic Systems Optimized for Interrow Distance between Parallel Arrays

Author:

Awan Ahmed BilalORCID,Alghassab Mohammed,Zubair MuhammadORCID,Bhatti Abdul RaufORCID,Uzair MuhammadORCID,Abbas GhulamORCID

Abstract

The aim of this research is to perform an in-depth performance comparison of ground-mounted and rooftop photovoltaic (PV) systems. The PV modules are tilted to receive maximum solar irradiance. The efficiency of the PV system decreases due to the mutual shading impact of parallel tilted PV modules. The mutual shading decreases with the increasing interrow distance of parallel PV modules, but a distance that is too large causes an increase in land cost in the case of ground-mounted configuration and a decrease in roof surface shading in the case of rooftop configuration, because larger sections of roof are exposed to sun radiation. Therefore, an optimized interrow distance for the two PV configurations is determined with the aim being to minimize the levelized cost of energy (LCoE) and maximize the energy yield. The model of the building is simulated in EnergyPlus software to determine the cooling load requirement and roof surface temperatures under different shading scenarios. The layout of the rooftop PV system is designed in Helioscope software. A detailed comparison of the two systems is carried out based on energy output, performance ratio, capacity utilization factor (CUF), energy yield, and LCoE. Compared to ground-mounted configuration, the rooftop PV configuration results in a 2.9% increase in CUF, and up to a 23.7% decrease in LCoE. The results of this research show that installing a PV system on a roof has many distinct advantages over ground-mounted PV systems such as the shading of the roof, which leads to the curtailment of the cooling energy requirements of the buildings in hot regions and land cost savings, especially for urban environments.

Funder

Majmaah University

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous)

Cited by 28 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3