Experimental Research on Microwave Ignition and Combustion Characteristics of ADN-Based Liquid Propellant

Author:

Shen Jiannan,Yu Yusong,Liu Xuhui,Cao Jie

Abstract

Microwave ignition has attracted much attention due to its advantages of reliable ignition, large ignition area and cold-start capability. In this paper, the experimental method is used to explore the ignition ability of the microwave device to ADN-based liquid propellant. Additionally, we discuss the influence of the inlet power and rate of propellant injected into the ignition system on the height of the combustion jet and the combustion temperature. In the experiment, a microwave-assisted ignition system was established based on a special microwave resonant cavity. The liquid propellant and working gas were sprayed into the resonator cavity through the hollow straight tube beneath the resonant cavity. The test results show that the device can ignite the propellant under the condition of 800 W input power, which proves the feasibility of the microwave ignition device for ADN-based liquid propellant. Microwave power has some influence on the flame spray height at the initial stage of combustion. The spray height at 2000 W is increased by 55.7% in comparison to 1000 W. In the stable combustion stage, the input power has a very significant increase in the average temperature of the flame, which is increased by 25%. The combustion is relatively better when the propellant flow rate is 30 mL/min, and the height of the flame spray increases by 25.2%. The increase in throughput did not have a significant impact on the flame temperature.

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Mechanical Engineering,Control and Systems Engineering

Reference22 articles.

1. Experimental study on thermal ignition ADN combustion of droplet of ammonium dinitramide based liquid propellant in different oxidizing gas atmospheres;Hong-Meng;Acta Astronaut.,2020

2. New technologies for ammonium dinitramide based monopropellant thrusters – The project RHEFORM

3. Development and investigation—Of laboratory model low-thrust thermal catalytic thruster on “green propellant”;Goza;Aerosp. MAI J.,2017

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3