Transcriptomic Analysis of Takifugu obscurus Gills under Acute Hypoxic Stress

Author:

Zhang Huakun12,Li Run12,Wang Yaohui3,Zhou Jinxu12,Xu Hao12,Gou Meng4,Ye Jianhua3,Qiu Xuemei12,Wang Xiuli12

Affiliation:

1. College of Fisheries and Life Science, Dalian Ocean University, Dalian 116023, China

2. Key Laboratory of Pufferfish Breeding and Culture in Liaoning Province, Dalian Ocean University, Dalian 116023, China

3. Jiangsu Zhongyang Group Company Limited, Nantong 226600, China

4. College of Life Science, Liaoning Normal University, Dalian 116081, China

Abstract

Takifugu obscurus has relatively small gills and gill pores, leading to a relatively low respiratory capacity and increased vulnerability to low dissolved oxygen (DO) levels compared to other fish. To investigate the responses of T. obscurus to acute hypoxic stress, high-throughput-sequencing-based transcriptomic analyses were conducted here to assess the responses of T. obscurus gills to acute hypoxic stress. Three environmental conditions were compared including normoxia (DO: 7.0 ± 0.2 mg/L), hypoxic stress (DO: 0.9 ± 0.2 mg/L), and reoxygenation (4, 8, 12, and 24 h after return to normoxia) conditions to identify differentially expressed genes (DEGs) responsive to hypoxia. A total of 992, 877, 1561, 1412, and 679 DEGs were identified in the normoxia and reoxygenation for 4, 8, 12, and 24 h groups in comparison to the hypoxia groups, respectively. The DEGs were primarily associated with oxidative stress, growth and development, and immune responses. Further functional annotation enrichment analysis of the DEGs revealed that they were primarily related to cytokine–cytokine interactions, transforming growth factor β receptor (TGF-β), cell adhesion molecules (CAMs), the vascular endothelial growth factor (VEGF) signaling pathway, and the mitogen-activated protein kinase (MAPK) signaling pathway. These results provide new insights into the physiological and biochemical mechanisms of T. obscurus adaptations to hypoxic stress. Furthermore, these results provide a framework for future studies into the molecular mechanisms of hypoxia tolerance and the healthy culture of T. obscurus and other fish.

Funder

Earmarked Fund

National Key R&D Program of China

Key Field Innovation Team Project of Dalian City, China

Innovation Team Project of Dalian Ocean University, China

Publisher

MDPI AG

Subject

General Veterinary,Animal Science and Zoology

Reference38 articles.

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3