Physiological, behavioral and biochemical adaptations of intertidal fishes to hypoxia

Author:

Richards Jeffrey G.1

Affiliation:

1. Department of Zoology, The University of British Columbia, 6270 University Blvd, Vancouver, BC, V6T 1Z4, Canada

Abstract

Summary Hypoxia survival in fish requires a well-coordinated response to either secure more O2 from the hypoxic environment or to limit the metabolic consequences of an O2 restriction at the mitochondria. Although there is a considerable amount of information available on the physiological, behavioral, biochemical and molecular responses of fish to hypoxia, very little research has attempted to determine the adaptive value of these responses. This article will review current attempts to use the phylogenetically corrected comparative method to define physiological and behavioral adaptations to hypoxia in intertidal fish and further identify putatively adaptive biochemical traits that should be investigated in the future. In a group of marine fishes known as sculpins, from the family Cottidae, variation in hypoxia tolerance, measured as a critical O2 tension (Pcrit), is primarily explained by variation in mass-specific gill surface area, red blood cell hemoglobin–O2 binding affinity, and to a lesser extent variation in routine O2 consumption rate (). The most hypoxia-tolerant sculpins consistently show aquatic surface respiration (ASR) and aerial emergence behavior during hypoxia exposure, but no phylogenetically independent relationship has been found between the thresholds for initiating these behaviors and Pcrit. At O2 levels below Pcrit, hypoxia survival requires a rapid reorganization of cellular metabolism to suppress ATP consumption to match the limited capacity for O2-independent ATP production. Thus, it is reasonable to speculate that the degree of metabolic rate suppression and the quantity of stored fermentable fuel is strongly selected for in hypoxia-tolerant fishes; however, these assertions have not been tested in a phylogenetic comparative model.

Publisher

The Company of Biologists

Subject

Insect Science,Molecular Biology,Animal Science and Zoology,Aquatic Science,Physiology,Ecology, Evolution, Behavior and Systematics

Reference66 articles.

1. Mechanisms of cell survival in hypoxia and hypothermia;Boutilier;J. Exp. Biol.,2001

2. Haemoglobin components and oxygen transport in relation to habitat selection in triplefin fishes (Tripterygiidae);Brix;J. Comp. Physiol. B Biochem. Syst. Environ. Physiol.,1999

3. Anoxic supression of Na+/K+-ATPase and constant membrane potential in hepatocytes: support for channel arrest;Buck;Am. J. Physiol.,1993

4. Microcalorimetric measurement of reversible metabolic suppression induced by anoxia in isolated hepatocytes;Buck;Am. J. Physiol.,1993

5. Anoxia-tolerant hepatocytes: model system for study of reversible metabolic suppression;Buck;Am. J. Physiol.,1993

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3