Mechanisms of cell survival in hypoxia and hypothermia

Author:

Boutilier R. G.1

Affiliation:

1. Department of Zoology, Downing Street, Cambridge CB2 3EJ, UK

Abstract

SUMMARYMost animals experience some degree of hypoxia and hypothermia during the course of their natural life history either as a consequence of ambient ‘exposure’ per se or through metabolic, respiratory and/or circulatory insufficiency. A prevailing experimental approach has been to probe tissues from natural models of hypoxia-tolerant and cold-tolerant vertebrates to look for common mechanisms of defence against O2 lack and hypothermia. The ability to sustain vital cellular functions in severe cases of either condition varies widely amongst the vertebrates. Like humans, the vast majority of mammals are unable to survive prolonged periods of hypothermia or O2 deprivation owing to irreversible membrane damage and loss of cellular ion homeostasis in vital organs such as the brain and heart. However, numerous hibernating endotherms, neonatal and diving mammals as well as many ectotherms can tolerate prolonged periods that would, in clinical terms, be called asphyxia or deep hypothermia. The key to their survival under such conditions lies in an inherent ability to downregulate their cellular metabolic rate to new hypometabolic steady states in a way that balances the ATP demand and ATP supply pathways.

Publisher

The Company of Biologists

Subject

Insect Science,Molecular Biology,Animal Science and Zoology,Aquatic Science,Physiology,Ecology, Evolution, Behavior and Systematics

Cited by 229 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3