Short-Term Hydrological Forecast Using Artificial Neural Network Models with Different Combinations and Spatial Representations of Hydrometeorological Inputs

Author:

Jougla Renaud,Leconte Robert

Abstract

In hydrological modelling, artificial neural network (ANN) models have been popular in the scientific community for at least two decades. The current paper focuses on short-term streamflow forecasting, 1 to 7 days ahead, using an ANN model in two northeastern American watersheds, the Androscoggin and Susquehanna. A virtual modelling environment is implemented, where data used to train and validate the ANN model were generated using a deterministic distributed model over 16 summers (2000–2015). To examine how input variables affect forecast accuracy, we compared streamflow forecasts from the ANN model using four different sets of inputs characterizing the watershed state—surface soil moisture, deep soil moisture, observed streamflow the day before the forecast, and surface soil moisture along with antecedent observed streamflow. We found that the best choice of inputs consists of combining surface soil moisture with observed streamflow for the two watersheds under study. Moreover, to examine how the spatial distribution of input variables affects forecast accuracy, we compared streamflow forecasts from the ANN using surface soil moisture at three spatial distributions—global, fully distributed, and single pixel-based—for the Androscoggin watershed. We show that model performance was similar for both the global and fully distributed representation of soil moisture; however, both models surpass the single pixel-based models. Future work includes evaluating the developed ANN model with real observations, quantified in situ or remotely sensed.

Publisher

MDPI AG

Subject

Water Science and Technology,Aquatic Science,Geography, Planning and Development,Biochemistry

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3