Deep learning model on rates of change for multi-step ahead streamflow forecasting

Author:

Tan Woon Yang1ORCID,Lai Sai Hin12ORCID,Pavitra Kumar3,Teo Fang Yenn4,El-Shafie Ahmed1

Affiliation:

1. a Department of Civil Engineering, Faculty of Engineering, University of Malaya, Kuala Lumpur 50603, Malaysia

2. b Department of Civil Engineering, Faculty of Engineering, Universiti Malaysia Sarawak (UNIMAS), 94300, Kota Samarahan, Sarawak, Malaysia

3. c Department of Geography and Planning, University of Liverpool, Liverpool L69 3BX, UK

4. d Faculty of Science and Engineering, University of Nottingham Malaysia, Semenyih, Selangor 43500, Malaysia

Abstract

Abstract Water security and urban flooding have become major sustainability issues. This paper presents a novel method to introduce rates of change as the state-of-the-art approach in artificial intelligence model development for sustainability agenda. Multi-layer perceptron (MLP) and deep learning long short-term memory (LSTM) models were considered for flood forecasting. Historical rainfall data from 2008 to 2021 at 11 telemetry stations were obtained to predict flow at the confluence between Klang River and Ampang River. The initial results of MLP yielded poor performance beneath normal expectations, which was R = 0.4465, MAE = 3.7135, NSE = 0.1994 and RMSE = 8.8556. Meanwhile, the LSTM model generated a 45% improvement in its R-value up to 0.9055. Detailed investigations found that the redundancy of data input that yielded multiple target values had distorted the model performance. Qt was introduced into input parameters to solve this issue, while Qt+0.5 was the target value. A significant improvement in the results was detected with R = 0.9359, MAE = 0.7722, NSE = 0.8756 and RMSE = 3.4911. When the rates of change were employed, an impressive improvement was seen for the plot of actual vs. forecasted flow. Findings showed that the rates of change could reduce forecast errors and were helpful as an additional layer of early flood detection.

Publisher

IWA Publishing

Subject

Atmospheric Science,Geotechnical Engineering and Engineering Geology,Civil and Structural Engineering,Water Science and Technology

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3