Alum and Gypsum Amendments Decrease Phosphorus Losses from Soil Monoliths to Overlying Floodwater under Simulated Snowmelt Flooding

Author:

Kumaragamage DarshaniORCID,Weerasekara Chamara S.,Perry Madelynn,Akinremi Olalekan O.,Goltz Doug

Abstract

Phosphorus (P) loss from soils poses a threat of eutrophication to downstream waterbodies. Alum (Al2(SO4)3·18H2O) and gypsum (CaSO4·2H2O) are effective in reducing P loss from soils; however, knowledge on their effectiveness under cold temperatures is limited. This study examined the reduction of P loss from soils with alum and gypsum amendment under simulated snowmelt flooding. Intact soil monoliths (15 cm depth) collected from eight agricultural fields in flood-prone areas of Manitoba, Canada, were surface amended with alum or gypsum, pre-incubated for 2 weeks, then flooded and incubated at 4 °C for 8 weeks. Porewater and floodwater samples collected weekly were analyzed for dissolved reactive P (DRP), dominant cations and anions. An enhanced P release with flooding time was observed in all soils whether amended or unamended; however, alum/gypsum amendment reduced DRP concentrations in porewater and floodwater in general, with alum showing a more consistent effect across soils. The reduction in floodwater DRP concentrations (maximum DRP concentration during flooding) with alum and gypsum ranged from 34–90% and 1–66%, respectively. Based on Visual MINTEQ thermodynamic model predictions, precipitation of P and formation of P-sorbing mineral species with alum and gypsum amendment reduced DRP concentrations at latter stages of flooding.

Funder

Environment and Climate Change Canada

Natural Sciences and Engineering Research Council

Publisher

MDPI AG

Subject

Water Science and Technology,Aquatic Science,Geography, Planning and Development,Biochemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3