Release of phosphorus and metal(loid)s from manured soils to floodwater during a laboratory simulation of snowmelt flooding

Author:

Weerasinghe Viranga12,Amarakoon Inoka12ORCID,Kumaragamage Darshani12ORCID,Casson Nora J.13ORCID,Indraratne Srimathie12ORCID,Goltz Douglas4,Gao Xiaopeng1

Affiliation:

1. Department of Soil Science University of Manitoba Winnipeg Manitoba Canada

2. Department of Environmental Studies and Sciences University of Winnipeg Winnipeg Manitoba Canada

3. Department of Geography The University of Winnipeg Winnipeg Manitoba Canada

4. Department of Chemistry The University of Winnipeg Winnipeg Manitoba Canada

Abstract

AbstractPhosphorus (P) and metal accumulation in manured agricultural soils and subsequent losses to waterways have been extensively studied; however, the magnitudes and the factors governing their losses during spring snowmelt flooding are less known. We examined the P and metal release from long‐term manured soil to floodwater under simulated snowmelt flooding with recent manure additions. Intact soil columns collected from field plots located in Randolph, Southern Manitoba, 2 weeks after liquid swine manure treatments (surface‐applied, injected, or control with no recent manure addition) were flooded and incubated for 8 weeks at 4 ± 1°C to simulate snowmelt conditions. Floodwater (syringe filtered through 0.45 µm) and soil porewater (extracted using Rhizon‐Mom samplers) samples were periodically extracted and analyzed for dissolved reactive phosphorus (DRP), pH, zinc (Zn), manganese (Mn), iron (Fe), magnesium (Mg), calcium (Ca), and arsenic (As). Mean floodwater DRP concentrations (mg L−1) for manure injected (2.0 ± 0.26), surface‐applied (2.6 ± 0.26), and control (2.2 ± 0.26) treatments did not differ significantly. Despite manure application, DRP loss to floodwater did not significantly increase compared to the control, possibly due to the elevated residual soil P at this site from the long‐term manure use. At the end of simulated flooding, the DRP concentrations increased by 1.5‐fold and 5‐fold in porewater and floodwater, respectively. Metal(loid) concentrations were not affected by manure treatments in general, except for Zn and Mg on certain days. Unlike DRP, where porewater and floodwater concentrations increased with time, metalloid concentration in porewater and floodwater did not show consistent trends with flooding time.

Funder

Natural Sciences and Engineering Research Council of Canada

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3