Impact Damage Detection in Composite Beams by Analysis of Non-Linearity under Pulse Excitation

Author:

Loi Gabriela,Porcu Maria CristinaORCID,Aymerich FrancescoORCID

Abstract

To detect the presence of damage, many structural health monitoring techniques exploit the nonlinear features that typically affect the otherwise linear dynamic response of structural components with internal defects. One of them is the Scaling Subtraction Method (SSM), which evaluates nonlinear features of the response to a high-amplitude harmonic excitation by subtracting a scaled reference signal. Originally tested on granular materials, the SSM was shown to be effective for composite materials as well. However, the dependence of the technique efficiency on the testing frequency, usually selected among the natural frequencies of the system, may limit its application in practice. This paper investigates the feasibility of applying the SSM through a broadband impulsive excitation, which would avoid the need of a preliminary modal analysis and address the issue of the proper selection of the excitation frequency. A laminated composite beam was tested in intact and damaged conditions under both scaled harmonic excitations of different frequency and broadband impulsive signals of scaled amplitude. Two damage indicators working on the frequency domain were introduced. The results showed a good sensitivity of the SSM to the presence and level of impact damage in composite beams when applied through a broadband impulsive excitation.

Publisher

MDPI AG

Subject

General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3