Vibro-Acoustic Modulation with broadband pump excitation for efficient impact damage detection in composite materials

Author:

Loi G,Marongiu G,Porcu M C,Aymerich F

Abstract

Abstract In the past few decades, the need for efficient and reliable Structural Health Monitoring strategies has led to the development of several approaches for damage detection and characterization purposes. Among them, the Nonlinear Vibro-Acoustic Modulation (VAM) exploits the modulation arising from the interaction of two concurrently applied driving waves, namely the probe and the pump excitations, in the presence of nonlinear scatters such as cracks and defects. Therefore, the VAM provides information on the emergence of internal damage by extracting the nonlinear modulated components of the response of a damaged system. Originally proposed for granular media, the method has shown to be effective in detecting the presence of defects also in metals and composite materials. Nonetheless, its efficacy is highly affected by the excitation frequencies, which are usually chosen among the system resonances. The need for a preliminary modal analysis and, at once, the risk of selecting pump-probe frequency combinations with low sensitivity to damage may make the procedure time-consuming and not fully reliable, preventing the VAM technique from being widely accepted as a robust monitoring tool. To overcome these limitations, a broadband excitation may be used. This study assesses the effectiveness of the VAM technique when a combination of a frequency-swept pump excitation and a mono-harmonic probe wave is applied to drive the sample. Experimental tests were conducted on a composite laminated beam mounted on an electrodynamic shaker and tested in both pristine and damaged conditions. Low-profile surface-bonded piezoceramic transducers were used for both probe excitation and sensing. Barely visible impact damage (BVID) was introduced in the composite beam to examine the potential of the approach for the detection of very small, localized damage. The results show that the use of VAM with a broadband low-frequency excitation may be an effective option for identifying nonlinearities associated with typical damage occurring in composite structures.

Publisher

IOP Publishing

Subject

General Medicine

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3