Numerical Analysis of Filament Wound Cylindrical Composite Pressure Vessels Accounting for Variable Dome Contour

Author:

Jois Kumar C.ORCID,Welsh MarcusORCID,Gries Thomas,Sackmann JohannesORCID

Abstract

In this work, the stress distribution along cylindrical composite pressure vessels with different dome geometries is investigated. The dome contours are generated through an integral method based on shell stresses. Here, the influence of each dome contour on the stress distribution at the interface of the dome-cylinder is evaluated. At first, the integral formulation for dome curve generation is presented and solved for the different dome contours. An analytical approach for the calculation of the secondary stresses in a cylindrical pressure vessel is introduced. For the analysis, three different cases were investigated: (i) a polymer liner; (ii) a single layer of carbon-epoxy composite wrapped on a polymer liner; and (iii) multilayer carbon-epoxy pressure vessel. Accounting for nonlinear geometry is seen to have an effect on the stress distribution on the pressure vessel, also on the isotropic liner. Significant secondary stresses were observed at the dome-cylinder interface and they reach a maximum at a specific distance from the interface. A discussion on the trend in these stresses is presented. The numerical results are compared with the experimental results of the multilayer pressure vessel. It is observed that the secondary stresses present in the vicinity of the dome-cylinder interface has a significant effect on the failure mechanism, especially for thick walled cylindrical composite pressure vessel. It is critical that these secondary stresses are directly accounted for in the initial design phase.

Publisher

MDPI AG

Subject

Engineering (miscellaneous),Ceramics and Composites

Reference25 articles.

1. Der 4. DeutscheWasserstoff-Congress 2008—Tagungsband,2008

2. Composite Filament Winding,2011

3. The Science and Engineering of Materials;Askeland,1991

4. Preliminary Design of Tubular Composite Structures Using Netting Theory and Composite Degradation Factors

Cited by 18 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3