Turbidity and Chemical Oxygen Demand Reduction from Pig Slurry through a Coagulation Flocculation Process

Author:

El bied Oumaima,Kessler MathieuORCID,Terrero Martire Angélica,Fechtali Taoufiq,Cano Angel Faz,Acosta José A.

Abstract

Pig slurry is considered a high-risk effluent that causes several environmental problems if it is not adequately managed and treated. White Iberian pig farms in the southeast of Spain treat their slurry in situ using separation, double filtration, decantation, and constructed wetland treatments. However, the pretreatment process does not successfully reduce solids, which leads to clogging in the constructed wetlands (CWs). The main objective of this research paper is to reduce the turbidity and chemical oxygen demand (COD) from the effluent to make it appropriate for CW treatment. Optimization of the coagulation–flocculation (CF) process using iron chloride and a cationic flocculent DKFLOCC-1598 was investigated by a central composite design method (CCD). The effects of coagulant concentration, pH, and flocculent on the COD and turbidity removal were evaluated. The best results were found using 0.024 mol L−1 iron chloride and 0.164 mL L−1 flocculent at pH 7.5, which reduced COD by 96% and delivered turbidity removal of 97%. Therefore, the results indicate the high efficiency of the treatment method in reducing the COD and suspended solids.

Publisher

MDPI AG

Subject

Agronomy and Crop Science

Reference51 articles.

1. Sector Porcino en Españahttps://www.mapa.gob.es/va/ganaderia/temas/produccion-y-mercados-ganaderos/sectores-ganaderos/porcino/

2. Environmental evaluation of transfer and treatment of excess pig slurry by life cycle assessment

3. Impacts of swine manure pits on groundwater quality

4. Life cycle assessment of pig slurry treatment technologies for nutrient redistribution in Denmark

5. Best Available Techniques (BAT) Reference Document for Large Combustion Plants;Lecomte,2017

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3