Comparative Life Cycle Assessment of a Historic and a Modern School Building, Located in the City of Naoussa, Greece

Author:

Pachta VasilikiORCID,Giourou Vasiliki

Abstract

Life Cycle Assessment is often applied as a methodological approach for evaluating the environmental performance and impact of the building sector, including building stock. In the present study, two school buildings, located in the city of Naoussa, N. Greece were analyzed, including a historic and a modern one. The survey concerned on-site inspection and documentation of the structures, data collection and analysis, Life Cycle Impact assessment, as well as comparative evaluation of the results. The objective was to indicate the constructional and performance characteristics of the buildings, as well as to comparatively evaluate their environmental performance and impact. Since historic school buildings still function as educational units, these aspects are crucial and may determine their future operation and use. For LCA, the expected life span of the buildings was taken into account (60 years for the modern school and 140 years for the historic one), as well as all life cycle stages (product, construction, use, end of life, beyond building life). Various indicators were assessed, such as Global Warming Potential (GWP), Fossil Fuel Consumption, Total Primary Energy, Non-Renewable Primary Energy. From the correlation of the results, it was asserted that although the two buildings present similar operational characteristics and needs, they have different environmental performances and impacts, mainly attributed to their different service life and structural characteristics. Although the operational GWP value of the historic building is higher (due to the extended life span), the embodied one is significantly lower (due to the natural materials used for its construction). Other indicators, such as fossil fuel consumption are also higher in the case of the modern school building, indicating that its environmental footprint is more intense.

Publisher

MDPI AG

Subject

Management, Monitoring, Policy and Law,Renewable Energy, Sustainability and the Environment,Geography, Planning and Development

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3