Adaptive Memory-Controlled Self-Attention for Polyphonic Sound Event Detection

Author:

Wang Mei,Yao Yu,Qiu Hongbin,Song XiyuORCID

Abstract

Polyphonic sound event detection (SED) is the task of detecting the time stamps and the class of sound event that occurred during a recording. Real life sound events overlap in recordings, and their durations vary dramatically, making them even harder to recognize. In this paper, we propose Convolutional Recurrent Neural Networks (CRNNs) to extract hidden state feature representations; then, a self-attention mechanism using a symmetric score function is introduced to memorize long-range dependencies of features that the CRNNs extract. Furthermore, we propose to use memory-controlled self-attention to explicitly compute the relations between time steps in audio representation embedding. Then, we propose a strategy for adaptive memory-controlled self-attention mechanisms. Moreover, we applied semi-supervised learning, namely, mean teacher–student methods, to exploit unlabeled audio data. The proposed methods all performed well in the Detection and Classification of Acoustic Scenes and Events (DCASE) 2017 Sound Event Detection in Real Life Audio (task3) test and the DCASE 2021 Sound Event Detection and Separation in Domestic Environments (task4) test. In DCASE 2017 task3, our model surpassed the challenge’s winning system’s F1-score by 6.8%. We show that the proposed adaptive memory-controlled model reached the same performance level as a fixed attention width model. Experimental results indicate that the proposed attention mechanism is able to improve sound event detection. In DCASE 2021 task4, we investigated various pooling strategies in two scenarios. In addition, we found that in weakly labeled semi-supervised sound event detection, building an attention layer on top of the CRNN is needless repetition. This conclusion could be applied to other multi-instance learning problems.

Funder

Natural Science Foundation of China

Publisher

MDPI AG

Subject

Physics and Astronomy (miscellaneous),General Mathematics,Chemistry (miscellaneous),Computer Science (miscellaneous)

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3