UAV Swarm Navigation Using Dynamic Adaptive Kalman Filter and Network Navigation

Author:

Zhang Jingjuan,Zhou Wenxiang,Wang Xueyun

Abstract

Aiming to improve the positioning accuracy of an unmanned aerial vehicle (UAV) swarm under different scenarios, a two-case navigation scheme is proposed and simulated. First, when the Global Navigation Satellite System (GNSS) is available, the inertial navigation system (INS)/GNSS-integrated system based on the Kalman Filter (KF) plays a key role for each UAV in accurate navigation. Considering that Kalman filter’s process noise covariance matrix Q and observation noise covariance matrix R affect the navigation accuracy, this paper proposes a dynamic adaptive Kalman filter (DAKF) which introduces ensemble empirical mode decomposition (EEMD) to determine R and adjust Q adaptively, avoiding the degradation and divergence caused by an unknown or inaccurate noise model. Second, a network navigation algorithm (NNA) is employed when GNSS outages happen and the INS/GNSS-integrated system is not available. Distance information among all UAVs in the swarm is adopted to compensate the INS position errors. Finally, simulations are conducted to validate the effectiveness of the proposed method, results showing that DAKF improves the positioning accuracy of a single UAV by 30–50%, and NNA increases the positioning accuracy of a swarm by 93%.

Funder

Aeronautical Science Fund

Beijing Natural Science Funds

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Increasing Operational Resiliency of UAV Swarms: An Agent-Focused Search and Rescue Framework;Aerospace Research Communications;2024-01-04

2. A Consensus-Based Kalman Filter for Target Localization in Emergency Scenarios;2023 IEEE International Workshop on Technologies for Defense and Security (TechDefense);2023-11-20

3. A Novel Statistically-Aided Learning Framework for Precise Localization of UAVs;2023 IEEE 97th Vehicular Technology Conference (VTC2023-Spring);2023-06

4. Experimental Investigation of Relative Localization Estimation in a Coordinated Formation Control of Low-Cost Underwater Drones;Sensors;2023-03-10

5. A novel interactive robust filter algorithm for GNSS/SINS integrated navigation;Proceedings of the Institution of Mechanical Engineers, Part G: Journal of Aerospace Engineering;2022-11-10

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3