Coal-Based Semicoke-Derived Carbon Anode Materials with Tunable Microcrystalline Structure for Fast Lithium-Ion Storage

Author:

Liu Yaxiong,Guo Xing,Tian XiaodongORCID,Liu Zhanjun

Abstract

Fast charging capability is highly desired for new generation lithium-ion batteries used in consumer-grade electronic devices and electric vehicles. However, currently used anodes suffer from sluggish ion kinetics due to limited interlayer distance. Herein, the coal-based semicoke was chosen as precursor to prepare cost-effective carbon anodes with high-rate performance through a facile pyrolytic strategy. The evolution of microstructure and its effect on electrochemical performance are entirely studied. The results show that large number of short-ordered defective structures are generated due to the occurrence of turbostatic-like structures when pyrolyzed at 900 °C, which are propitious to large interlayer distance and developed porous structure. High accessible surface area and large interlayer spacing with short-ordered defective domains endow the sample treated at 900 °C under argon (A900) with accelerated ion dynamics and enhanced ion adsorption dominated surface-induced capacitive processes. As a result, A900 delivers high capacity (331.1 mAh g−1 at 0.1 A g−1) and long life expectancy (94.8% after 1000 cycles at 1 A g−1) as well as good rate capability (153.2 mAh g−1 at 5 A g−1). This work opens a scalable avenue to fabricating cost-effective, high-rate, and long cycling life carbon anodes.

Funder

Shanxi Province Science Foundation for Youths

YLU-DNL Fund

Publisher

MDPI AG

Subject

General Materials Science,General Chemical Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3