Abstract
Established measurement methods for hydraulic soil properties cover a limited soil moisture range. Simulations of soil water dynamics based on such observations are therefore rarely representative for all conditions from saturation to drought. Recent technical developments facilitate efficient and cheap collecting of soil water characteristics data, but the quantitative benefit of extended measurement campaigns has not been adequately tested yet. In this study, a combination of four methods to measure water retention and hydraulic conductivity at different moisture ranges was applied. Evaporation method, dewpoint psychrometry, hood infiltrometer experiments, and falling head method for saturated conductivity were conducted at two experimental sites in eastern Austria. Effects of including the particular methods in the measurement strategy were examined by visual evaluation and a 1D-modelling sensitivity study including drainage, infiltration and drought conditions. The evaporation method was considered essential due to its broad measurement range both for water retention and hydraulic conductivity. In addition to that, the highest effect on simulated water balance components was induced by the inclusion of separate conductivity measurements near saturation. Water content after three days of drainage was 15 percent higher and the transpiration rate in a drought period was 22 percent higher without near-saturated conductivity measurements. Based on relative comparisons between different combinations, we suggested combining evaporation method and hood infiltrometer experiments as the basis for representative predictions of soil water dynamics.
Funder
Austrian Science Fund
Deutsche Forschungsgemeinschaft
Subject
Water Science and Technology,Aquatic Science,Geography, Planning and Development,Biochemistry
Cited by
16 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献