Anisotropy of soil water diffusivity of hillslope soil under spruce forest derived by X-ray CT and lab experiments

Author:

Beck-Broichsitter Steffen,Dusek Jaromir,Vogel Tomas,Horn Rainer

Abstract

AbstractThe idea of the study is to indicate direction-dependent differences in hydraulic conductivity, K(Se), and soil water diffusivity, D(θ), as function of the volume fraction related to the fractional capillary potential for each of the characteristic pore size classes by extended anisotropy factors. The study is exemplary focused on a BwC horizon of a Dystric Cambisol under spruce forest formed on the weathered and fractured granite bedrock in the mountainous hillslopes Uhlirska catchment (Czech Republic). Thus, undisturbed soil samples were taken in vertical (0°, y = x-axis) and horizontal (90°, z-axis) direction. The D(θ) values and especially the D(θ)-weighted anisotropy ratios showed that anisotropy increases with the volume fraction of macropores, MaP (d > 0.03 mm), with r2 between 0.89 and 0.92. The X-ray computer tomography (CT) based anisotropy ratio (ACT) is larger for the horizontal sampled soil core with 0.31 than for the vertical with 0.09. This underlines the existence of a predominantly horizontally oriented pore network and the fact that weathered bedrock strata can initiate lateral preferential flow. The study results suggest that combining the hydraulic conductivity as intensity and the capacity parameter by means of diffusivity results in an extended anisotropy ratio which unveils the role of the soil hydraulic characteristics in generation of small-scale lateral preferential flow. In future, the small-scale direction-dependent differences in the soil hydraulic capacity and intensity parameter will be used for model-based upscaling for better understanding of preferential flow at the catchment scale.

Funder

GACR

Christian-Albrechts-Universität zu Kiel

Publisher

Springer Science and Business Media LLC

Subject

Earth-Surface Processes,Geology,Pollution,Soil Science,Water Science and Technology,Environmental Chemistry,Global and Planetary Change

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3