Neural Inverse Optimal Control of a Regenerative Braking System for Electric Vehicles

Author:

Ruz-Hernandez Jose A.ORCID,Djilali LarbiORCID,Ruz Canul Mario AntonioORCID,Boukhnifer MoussaORCID,Sanchez Edgar N.ORCID

Abstract

This paper presents the development of a neural inverse optimal control (NIOC) for a regenerative braking system installed in electric vehicles (EVs), which is composed of a main energy system (MES) including a storage system and an auxiliary energy system (AES). This last one is composed of a supercapacitor and a buck–boost converter. The AES aims to recover the energy generated during braking that the MES is incapable of saving and using later during the speed increase. To build up the NIOC, a neural identifier has been trained with an extended Kalman filter (EKF) to estimate the real dynamics of the buck–boost converter. The NIOC is implemented to regulate the voltage and current dynamics in the AES. For testing the drive system of the EV, a DC motor is considered where the speed is controlled using a PID controller to regulate the tracking source in the regenerative braking. Simulation results illustrate the efficiency of the proposed control scheme to track time-varying references of the AES voltage and current dynamics measured at the buck–boost converter and to guarantee the charging and discharging operation modes of the supercapacitor. In addition, it is demonstrated that the proposed control scheme enhances the EV storage system’s efficacy and performance when the regenerative braking system is working. Furthermore, the mean squared error is calculated to prove and compare the proposed control scheme with the mean squared error for a PID controller.

Funder

Consejo Nacional de Ciencia y Tecnología

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous),Building and Construction

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3