Neural Sliding Mode Control of a Buck-Boost Converter Applied to a Regenerative Braking System for Electric Vehicles

Author:

Ruz-Hernandez Jose A.1ORCID,Garcia-Hernandez Ramon2ORCID,Ruz Canul Mario Antonio3ORCID,Guerra Juan F.2ORCID,Rullan-Lara Jose-Luis1ORCID,Vior-Franco Jaime R.1ORCID

Affiliation:

1. Facultad de Ingenieria, Universidad Autonoma del Carmen, C.56 No.4 Esq. Avenida Concordia Col. Benito Juarez, Ciudad del Carmen 24180, Campeche, Mexico

2. Tecnologico Nacional de Mexico, Instituto Tecnologico de La Laguna, Blvd. Revolución y Av. Instituto Tecnologico de La Laguna s/n, Torreon 27000, Coahuila, Mexico

3. Centro Universitario de Ciencias Exactas e Ingenierias, Universidad de Guadalajara, Blvd. Marcelino Garcia Barragan, Guadalajara 44430, Jalisco, Mexico

Abstract

This paper presents the design and simulation of a neural sliding mode controller (NSMC) for a regenerative braking system in an electric vehicle (EV). The NSMC regulates the required current and voltage of the bidirectional DC-DC buck–boost converter, an element of the auxiliary energy system (AES), to improve the state of charge (SOC) of the battery of the EV. The controller is based on a recurrent high-order neural network (RHONN) trained using the extended Kalman filter (EKF) and the unscented Kalman filter (UKF) as the tools to train the neural networks to obtain a higher SOC in the battery. The performance of the controller with the two training algorithms is compared with a proportional integral (PI) controller illustrating the differences and improvements obtained with the EKF and the UKF. Furthermore, robustness tests considering Gaussian noise and varying of parameters have demonstrated the outcome of the NSMC over a PI controller. The proposed controller is a new strategy with better results than the PI controller applied to the same buck–boost converter circuit, which can be used for the main energy system (MES) efficiency in an EV architecture.

Funder

Universidad Autónoma del Carmen

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3