Abstract
With high penetration of renewable energy sources (RESs), advanced microgrid distribution networks are considered to be promising for covering uncertainties from the generation side with demand response (DR). This paper analyzes the effectiveness of multi-objective optimization in the optimal resource scheduling with consumer fairness under renewable generation uncertainty. The concept of consumer fairness is considered to provide optimal conditions for power gaps and time gaps. At the same time, it is used to mitigate system peak conditions and prevent creating new peaks with the optimal solution. Multi-objective gray wolf optimization (MOGWO) is applied to solve the complexity of three objective functions. Moreover, the best compromise solution (BCS) approach is used to determine the best solution from the Pareto-optimal front. The simulation results show the effectiveness of renewable power uncertainty on the aggregate load profile and operation cost minimization. The results also provide the performance of the proposed optimal scheduling with a DR program in reducing the uncertainty effect of renewable generation and preventing new peaks due to over-demand response. The proposed DR is meant to adjust the peak-to-average ratio (PAR) and generation costs without compromising the end-user’s comfort.
Funder
Suranaree University of Technology, Thailand
Subject
Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous),Building and Construction
Cited by
6 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献